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Abstract
Annihilation of the electron–positron pairs (or (e−, e+)-pairs, for short) in
various polyelectrons e+

ne−
m = e−

me+
n (where n � 1 and m � 1) is considered. In

particular, we discuss the three- and four-photon annihilation of the (e−, e+)-
pairs in the three-body Ps− ion and four-body bi-positronium system Ps2. It
is shown that the five-body e+

2e−
3 ion is an unbound system. The closed-

form expression is derived for the amplitude-square |M|2 of the three-photon
annihilation of (e−, e+)-pair at arbitrary energies of the colliding particles.
Analogous amplitude-square |M|2 for the four-photon annihilation is reduced
to the form which is convenient for future analytical calculations. A method
which can be used to produce macroscopic polyelectrons is briefly discussed.

PACS numbers: 36.10.−k, 36.10.Dr

1. Introduction

Annihilation of the electron–positron pairs (or (e−, e+)-pairs, for short) in various polyelectrons
e+
ne−

m is considered. The polyelectrons discussed in this work include the three-body
positronium ion Ps−(

e+e−
2

)
and four-body bi-positronium system Ps2

(
e+

2e−
2

)
. We also consider

annihilation of the (e−, e+)-pairs in macroscopic polyelectrons, i.e. in the e+
ne−

m systems,
where n ≈ NA and m ≈ NA and NA ≈ 6.022 × 1023 is the Avogadro number. Here
and everywhere, the notation e+ stands for the positron, while the notation e− means the
electron. Theory of polyelectrons and analysis of annihilation in such systems are required
in many applications. Note that in small polyelectrons e+

ne−
m, where n � 5 and m � 5,

the leading annihilation process is the annihilation of electron–positron pairs from bound
states. In higher polyelectrons, annihilation of the (e−, e+)-pairs from unbound states also
contribute.

The positronium ion, bi-positronium and higher polyelectrons are of great interest in some
applications to astrophysics [1], solid state physics [2] and other problems [3–5]. Most of
such applications are related to the electron–positron pair annihilation in these polyelectrons.
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For instance, a long-standing, unsolved problem in astrophysics is to explain the formation
and nature of an unknown and very intense source of positrons located at the center of
our galaxy. In fact, this source is located at a distance of ≈8 kpc (1 kpc ≈3.086 ×
1016 km) from our Sun in the direction of galactic center. It has spatial radius ≈1 kpc
[1, 6] and generates extremely large number of positrons per second (≈1.3 × 1043 positrons
[6]). The emitted positrons later annihilate in that area which is usually called by the galactic
bulge [6]. An intense emission of the 511 keV annihilation γ -quanta from galaxy bulge
indicates that the (e−, e+)-pair annihilation proceeds mainly from the bound states of various
polyelectrons and positron compounds with some light atoms. Therefore, in order to make
quantitative evaluations for the mentioned positron source, one needs to estimate the relative
probabilities of different annihilation processes in the Ps− ion, bi-positronium Ps2 and other
polyelectrons.

Note also that the macroscopic polyelectrons as well as the electron–positron plasma are
the examples of the systems from different, non-Born–Oppenheimer world. Indeed, the masses
of positive and negative particles in such systems are equal to each other. It is clear that the
properties of non-Born–Oppenheimer systems differ quite substantially from the properties of
regular atomic–molecular systems. This explains the interest to polyelectrons from statistical
physics. Another interesting application of polyelectrons is related to the energy production
purposes. Indeed, it is easy to evaluate that the total annihilation of one gram of the electron–
positron (1:1) mixture produces the energy ≈4.93 × 1010 J. The same amount of energy can
be obtained, e.g., from thermal explosion of 11.8 tonnes of TNT. Briefly, the amount of energy
released during complete annihilation of one gram of the electron–positron (1:1) mixture is
quite comparable with the thermal energy released from the fission of one gram of Pu-239
(16.4 tonnes TNT per gram) and from the thermonuclear burning of one gram of the 1:1
deuterium–tritium mixture (13.8 tonnes TNT per gram). Note that the (e−, e+)-pair annihilation
does not require any minimal critical density and/or threshold temperature for its ignition.
On the other hand, the rate of energy release in any system undergoing annihilation rapidly
increases at high compressions. This is also true for all working fusion/fission systems. At
high densities, the photons emitted during (e−, e+)-pair annihilation have significantly better
probabilities to re-deposit their energy into surrounding atoms and electrons. A possibility to
use the (e−, e+)-pair annihilation in highly compressed macroscopic polyelectrons seems to
be very interesting for energy production purposes.

On the other hand, the annihilation of the (e−, e+)-pairs in various polyelectrons is an
important problem of quantum electrodynamics. In general, such an annihilation proceeds
with the emission of two, three, . . . , n photons. The one- and zero-photon annihilations are
also possible for many polyelectrons (see below). Accurate evaluation of the corresponding
annihilation rates is an extremely complicated QED problem. All mentioned problems attract
a very significant attention to polyelectrons.

Note that the existence of the bound Ps− ion has been predicted long ago by Ruark [7]
and Wheeler [8]. Rigorously, the boundness of the ground state in the Ps− ion was shown by
Hylleraas [9]. Hylleraas and Ore also showed the boundness of the bi-positronium Ps2. In
his work [8], Wheeler also discussed a possibility to create some higher polyelectrons e+

ne−
m,

where n � 2 and m � 2. Our main goal is to consider the annihilation of the (e−, e+)-pairs
in various polyelectrons. By analyzing (e−, e+)-pair annihilation in the ground states of the
Ps− ion and bi-positronium Ps2, we want to bring attention to a number of problems which
still remain unsolved. In particular, we derive the explicit and closed expression for the
|M|2 factor for the three-photon annihilation of the (e−, e+)-pair at arbitrary energies of the
colliding electron and positron. The analogous expression for the amplitude-square |M|2 in
the case of four-photon annihilation has been reduced to the form which is convenient for



Annihilation of the electron–positron pairs in polyelectrons 11925

future considerations. Another goal of this study is to discuss the new approach which can
be used to create macroscopic polyelectrons e+

ne−
m (or polyleptons [11]), where n ≈ NA and

m ≈ NA, where NA is the Avogadro number.
This work has the following structure. In the following section, we briefly review the

annihilation results known for the Ps− ion and bi-positronium Ps2. The three- and four-photon
annihilation of the (e−, e+)-pair is considered in sections 3 and 4, respectively. The creation
of macroscopic polyelectrons is discussed in section 5. Concluding remarks can be found in
the last section.

2. Positron annihilation in the positronium ion, bi-positronium and higher polyelectrons

Let us discuss the (e−, e+)-pair annihilation in the three-body positronium ion Ps−(
e+e−

2

)
.

Annihilations of the (e−, e+)-pair in the three-body Ps− ion may proceed with the emission
of the two and three photons, respectively. The four-, five- and more photon annihilations
also occur in the Ps− ion, but the probabilities of such processes are much smaller (about
four-photon annihilation, see section 4). In addition to these many-photon processes, the
one-photon annihilation [12] is possible in the Ps− ion. The formula for the one-photon
annihilation rate �1γ in the Ps− ion takes the form [12, 13]

�1γ = 64π2

27
α8 c a−1

0 〈δ321〉 = 1065.756 9198 〈δ321〉 s−1, (1)

where α = 0.729 735 2568×10−2 is the fine structure constant, c = 0.299 792 458×109 m s−1

is the speed of light in vacuum and a0 is the Bohr radius which equals 0.529 177 2108×10−10 m.
In this study, the values of all physical constants are taken from [14]. By using the
expectation value of the triple delta-function 〈δ321〉 ≈ 3.588 917 35 × 10−5 from our most
recent highly accurate computations [15], one finds that �1γ ≈ 3.824 91 × 10−2 s−1.
Note that the total non-relativistic energy obtained with the same wavefunctions [15] is
Enr = −0.262 005 070 232 980 107 770 3745 au, i.e. the most accurate value to-date.

Now, consider the two- and three-photon annihilations of the positronium ion Ps−. It
can be shown that the corresponding annihilation rates are uniformly related to the analogous
values determined for the singlet/triplet bound states of the electron–positron pair (positronium
Ps (e+, e−), for short). In general, the (e−, e+)-pair can be either in the singlet state, or in the
triplet state. Annihilation of the singlet (e−, e+)-pair can proceed with the emission of the
even number of photons (two, four, six, etc). In contrast with this, annihilation of the triplet
(e−, e+)-pair produces only odd number of photons (three, five, etc). The leading two- and
three-photon annihilations of the electron–positron pairs are of great interest in applications.
The corresponding annihilation rates �2γ and �3γ for the bound singlet/triplet (e−, e+)-pair
can be written in the following forms [16]:

�2γ = 4πα4ca−1
0

[
1 − α

π

(
5 − π2

4

)]
〈δ+−〉 ≈ 4 × 50.172 802 698 04 × 109〈δ+−〉 s−1, (2)

where δ+− is the electron–positron delta-function, and

�3γ = 16(π2 − 9)

9
α5ca−1

0 〈δ+−〉 ≈ 4

3
× 1.359 272 297 74 × 108〈δ+−〉 s−1, (3)

respectively. Note that each of these two formulae explicitly contain the expectation value
of the electron–positron delta-function δ+−. The expression for the two-photon annihilation
rate �2γ , equation (2), also includes the lowest order radiative correction to the two-photon
annihilation rate [17].



11926 A M Frolov and F A Chishtie

In applications to the polyelectron systems e+
ne−

m the formulae, equations (2) and (3),
must be multiplied by the total number of the singlet/triplet electron–positron pairs (N) and
corresponding statistical weights of the considered singlet/triplet spin states. In particular, for
the Ps− ion we have m = 2 and N = 2, while the statistical weights of the singlet and triplet
states equal 1

4 and 3
4 , respectively. Therefore, from the formulae presented above one finds

�2γ = Nπα4ca−1
0

[
1 − α

π

(
5 − π2

4

)]
〈δ+−〉 ≈ 100.345 605 3781 × 109〈δ+−〉 s−1 (4)

and

�3γ = N
4(π2 − 9)

3
α5ca−1

0 〈δ+−〉 ≈ 2.718 545 954 × 108〈δ+−〉 s−1, (5)

The sum of the �2γ and �3γ annihilation rates for the Ps− ion is usually called the total
annihilation rate � [18, 19]. The explicit formula for the total annihilation rate � takes the
form

� = �2γ + �3γ = Nπα4ca−1
0

[
1 − α

(
17

π
− 19π

12

)]
〈δ+−〉

= 100.617 459 973 57 × 109 〈δ+−〉 s−1. (6)

By using the best-to-date expectation value for the electron–positron delta-function in the
Ps− ion [15] (〈δ+−〉 ≈ 2.073 319 800 5180(15) × 10−2 au), one finds from the formulae
given above �2γ ≈ 2.080 485 305 25 × 109 s−1, �3γ ≈ 5.636 415 1550 × 106 s−1 and � ≈
2.086 121 7204 × 109 s−1. In the laboratory measurements of the total annihilation rate � in
the Ps− ion [20], it was found that � ≈ 2.09 × 109 s−1.

2.1. Positron annihilation in bi-positronium

The bi-positronium Ps2 (or e+
2e−

2 ) is the four-body system of two electrons and two positrons.
The electron–positron annihilation in this four-body system has been discussed in our earlier
work [21]. Briefly, all formulae for the corresponding annihilation rates from the previous
section can also be used for bi-positronium Ps2. The only difference can be found is the total
number of electron–positron pairs. In bi-positronium one finds N = 2 × 2 = 4, while in the
Ps− ion N = 2. In general, in the polyelectron which contains m electrons and n positrons we
have N = m × n.

Note, however, that in addition to the processes considered above, in bi-positronium
Ps2 the zero-photon annihilation of the (e−, e+)-pair is also possible. The corresponding
annihilation rate is [22]

�0γ = 147
√

3π3

2
α12

(
ca−1

0

)〈δ++−−〉 = 5.099 189 × 10−4 〈δ++−−〉 s−1, (7)

where 〈δ++−−〉 is the expectation value of the four-particle delta-function in bi-positronium
Ps2.

The one-photon annihilation in the Ps2 system may also proceed with the emission of either
one fast positron, or one fast electron (in the Ps− ion only fast electron can be emitted during
such a process). In respect to this, the total one-photon annihilation rate in bi-positronium Ps2

is written in the form

�1γ = 128π2

27
α8

(
ca−1

0

)〈δ+−−〉 = 2.131 5138 × 104 〈δ+−−〉 s−1, (8)

where 〈δ+−−〉 = 〈δ++−〉 in the Ps2 system. The one-photon annihilation is followed by the
emission of one fast electron/positron. The Lorentz γ -factor of the fast electron/positron
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in the Ps2 system emitted during the one-photon annihilation is always bounded between 1
and 2.

In general, to evaluate the corresponding annihilation rates in bi-positronium Ps2,
one needs to know the expectation values of all electron–positron delta-functions, i.e. the
〈δ+−〉, 〈δ+−−〉 (=〈δ++−〉) and 〈δ++−−〉 expectation values. Our most recent expectation values
obtained for these delta-functions in the Ps2 system are 〈δ+−〉 = 2.210 39 × 10−2, 〈δ+−−〉 =
〈δ++−〉 = 9.1995 × 10−5 and 〈δ++−−〉 = 4.596 × 10−6 (all values are in atomic units). The
wavefunction used in these calculations corresponds to the total energy of the Ps2 system,
E ≈ −0.516 003 7901 au. This wavefunction is very accurate, since the ground-state energy
obtained with this wavefunction is very close to the lower value produced in [23]. By using
these numerical values and formulae presented above, one can determine the �0, �1, �2, �3

and � annihilation rates for bi-positronium.

2.2. Annihilation in higher polyelectrons

Currently, the Ps− ion and bi-positronium Ps2 are the only two polyelectrons which have been
extensively studied. The bound-state computations of higher polyelectrons are significantly
more difficult to perform. In fact, the boundness of higher polyelectrons, including the five-
body ion e+

2e−
3 and six-body tri-positronium system e+

3e−
3 is still an open question. Main

problem here is related to very complex permutation symmetry of the wavefunctions. In
general, the three electrons/positrons can form the following six spin states: the two doublet
states with the total spin S = 1

2 and four quartet states with S = 3
2 . It can be shown that in

bound-state computations of the e+
2e−

3 and e+
3e−

3 systems only doublet three-electron/positron
states are important. Analogous spin states with the total spin S = 3

2 do not contribute and can
be ignored. In respect to this, below in this section we restrict ourselves to the consideration
of the doublet three-electron/positron states only.

As follows from the results of our study, the bound ground state in the e+
2e−

3 ion
cannot be obtained, if only one electron spin function s1 = (αβα − βαα) is used in
computations. The computed energies converge to the lowest dissociation threshold for the
e+

2e−
3 ion Etr ≈ −0.516 003 7910 au which corresponds to the dissociation e+

2e−
3 = Ps2 + e−.

Analogous energies determined with the use of two electron spin functions s1 = (αβα−βαα)

ands2 = (2ααβ − βαα − αβα) converge to the same value Etr, but in this case the actual
convergence is much faster. In our present calculations of the e+

2e−
3 ion, we have used up

to 400 radial basis functions (five-body gaussoids of ten relative coordinates) with carefully
optimized nonlinear parameters. The two electron spin functions s1 and s2 were also used. As
follows from these computations the ground state in the e+

2e−
3 ion was not bound, and therefore,

very likely that the e+
2e−

3 ion does not exist as a bound system.
However, if one electron in the e+

2e−
3 ion is completely separated from the core (Ps2) and

can be considered as a distinguishable particle, then the e+
2e−

3 system is quite well bound. Its
total energy in this case is E ≈ −0.555 889 au, while the threshold energy is the same as above
E ≈ −0.516 003 7910 au. The expectation value of the electron–positron delta-function for
the e+

2e−
3 system is ≈0.017 1795 (�2γ ≈ 5.171 14×109 s−1). This means that the five-body ion

e+
2e−

3 can be considered as an asymptotically bound system and its structure is approximately
represented as a motion of one electron in the field of bi-positronium Ps2. The structure
of the e+

2e−
3 ion in this case corresponds to the structure of highly excited Rydberg states in

many-electron atoms. Briefly, we can say that the five-body ion e+
2e−

3 is an unbound system,
but in some sense it can be represented as an ‘asymptotically bound system’. The electron
with small (zero) kinetic energy cannot move to the infinity from the central Ps2 system. In
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general, this also means that some resonances can be observed in the e− + Ps2 scattering at
small energies.

The situation with the tri-positronium system Ps3 = e+
3e−

3 is even more complicated.
Our current computational results for this six-body system are converging to the energy
which corresponds to the dissociation threshold for tri-positronium Ps3 = Ps2 + Ps
(E ≈ −0.766 003 7910 au). Nevertheless, there is a chance that the tri-positronium is bound,
since in our computations we have used only one spin function for three positrons and two spin
functions for three electrons. In actual computations, all four independent spin functions must
be used. Moreover, in the Ps3 system, the overall contribution of the spin–spin interaction
between electron and positron spin functions can be quite comparable with its total binding
energy. A number of other factors may also contribute to the binding energy of tri-positronium.
All such factors must be taken into account before the final conclusion about the stability of
the Ps3 system is made. Currently, the boundness of the Ps3 system is an open question and
its solution requires additional investigations.

It should be mentioned that in small polyelectrons e+
ne−

m annihilation of the (e−, e+)-pairs
always proceeds from the bound (ground) state. However, if the total number of electron–
positron pairs in polyelectrons increases, then their life-time against annihilation rapidly
decreases, τ ∼ 1

mn
. It follows from here that polyelectrons with n � 50 and m � 50

cannot be created in practice. Indeed, the life-time of such polyelectrons is shorter than
1 × 10−13 s, while the corresponding formation time certainly exceeds this value (≈5 ×
10−13 s). This logic cannot be applied to linear polyelectrons where each positron/electron has
only finite number of surrounding antiparticles. In other words, various linear polyelectrons,
including macroscopic polyelectrons, can be created in reality. This problem is discussed in
section 5.

As mentioned above in higher polyelectrons annihilation of the (e−, e+)-pairs also
proceeds from the states of unbound spectra. Therefore, it is important to consider annihilation
from the states of unbound spectra in polyelectrons (= annihilation-in-flight). The overall
rate of such a n-photon process is determined by the annihilation cross-section σnγ . The
annihilation cross-section is the function of the energies of colliding particles. For instance,
the total spin-averaged cross-section of the two-photon annihilation of the electron–positron
pair written in the electron rest frame is given by the following expression [24]:

σ = πα2

4m2

1 − v2

v2

[
(3 − v4) ln

(
1 + v

1 − v

)
− 2v(2 − v2)

]
, (9)

where v is the velocity of the colliding positron e+. Here and in the two following sections,
we shall use the so-called relativistic units c = 1 and h̄ = 1. Note that in these units one finds
m = α−1 and a0 = α−1 [25]. The last formula is reduced to the form

σ = πα2

2m2

1 − v2

v

[
(3 − v4)

∞∑
k=1

v2k−2

2k − 1
− 2 − v2

]
. (10)

As follows from this formula, σ ∼ 1
v
, if v → 0. This can be expected since the two colliding

charged particles have opposite electric charges (electron e− and positron e+). Also, it is
clear from the last formula that the product σv is not singular for small and zero positron
velocities v.

3. Three-photon annihilation

The non-relativistic limit for the three-photon annihilation rate �3γ , equation (3), has been
obtained almost 60 years ago [26–28]. The three-photon annihilation of the electron–positron
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pair is also considered in some modern papers (see, e.g., [31] and references therein). In
many actual cases, however, it is also important to know the higher order corrections to the
annihilation rate obtained in the lowest-order approximation, equation (3). Briefly, one needs
to obtain the formula for the �3γ annihilation width which can be applied at arbitrary velocities
of the colliding electron and positron. However, due to extreme complexity of the problem
the general expression for the �3γ annihilation rate has not been derived yet.

In this study, we want to derive the closed analytical formulae for the corresponding
amplitude-square |M|2. The principal conservation law in the case of the three-photon
annihilation of the (e−, e+)-pair is

p1 + p2 = k1 + k2 + k3, (11)

where p1 and p2 are the 4-vectors of electron and positron momenta, respectively, and k1, k2

and k3 are the 4-vectors of photon momenta. Note that for the real particles we always have
p2

1 = m2 and p2
2 = m2, while for the real photons k2

i = 0 (i = 1, 2, 3). From equation (11),
one finds

m2 + p1 · p2 = k1 · k2 + k1 · k3 + k2 · k3, (12)

where p1 · p2 = E1 · E2 − p1 · p2 and ki · kj = ωi · ωj − ki · kj . From equation (11), one can
produce a number of other conservation laws, e.g.,

m2 + p1 · p2 = p1 · k1 + p1 · k2 + p1 · k3, (13)

where p1 · ki = E1 · ωi − p1 · ki , and

ki · p1 + ki · p2 = ki · kj + ki · kl, (14)

where (i, j, l) = (1, 2, 3).
The Feynman diagram of the three-photon annihilation is shown in figure 1. The

corresponding matrix element M takes the form

M = v

[
ε3

1

p1 − k1 − k2 − m
ε2

1

p1 − k1 − m
ε1 + ε2

1

p1 − k1 − k3 − m
ε3

1

p1 − k1 − m
ε1

+ · · · + εi

1

p1 − kj − kl − m
εj

1

p1 − kl − m
εl + · · ·

]
u, (15)

where (i, j, l) = (1, 2, 3). The v and u are the positron and electron bi-spinors, respectively,
while ki and εi (i = 1, 2, 3) are the momentum and polarization of the ith photon. The total
number of terms in the amplitude M equals six. Each of these six terms in equation (15) can
be transformed in the following way [29] (e.g., for the first term):

M1 = v

[
ε3

1

p1 − k1 − k2 − m
ε2

1

p1 − k1 − m
ε1

]
u

= A1v[ε3(p1 − k1 − k2 − m)ε2 × (p1 − k1 − m)ε1]u

= A1v[ε3(p2 − k3 − m)ε2(p1 − k1 − m)ε1]u, (16)

where

A1 = 1

4(p1 · k1)(p2 · k3)
. (17)

To simplify the expressions for the amplitudes M1 and Mi (i = 2, 3, 4, 5, 6), we need to
impose a few additional conditions on the photon polarization 4-vectors εi (i = 1, 2, 3). In
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p1

k1

k2

k3

p2

e−

e+

Figure 1. Graph of (e−, e+)-pair annihilation into three photons. The (1, 2, 3)-graph is shown.

particular, we shall assume that the following conditions are obeyed for the three εi 4-vectors
[30]:

εi · ki = 0, εi · εi = −1, εi · p1 = 0, (18)

where i = 1, 2, 3. It is to be noted that the last condition in equation (18) implies a redefinition
of an arbitrary set of the photon polarization vectors, ε

µ

i = ε
µ

i − εi ·p1

ki ·p1
. k

µ

i , such that the
incoming electron momenta, p1, is orthogonal to all the polarization vectors. This retains
the original normalization and transversality conditions (in the covariant Lorentz gauge) and
leads to further simplification without any loss of generality in the calculation. For notational
simplication, we choose εi over εi for the rest of the paper. This simplication will also be
applied in the four-photon case. The five other conditions for the p1, p2, k1, k2 and k3 4-vectors
have been mentioned earlier, p2

1 = m2, p2
2 = m2 and k2

i = 0 (i = 1, 2, 3).
By using these relations, we can drastically simplify the expression for the amplitude

equation (16). Indeed, by applying the relation ab = 2(a · b) − ba, where a and b are the two
arbitrary 4-vectors, one finds

(p1 − k1 + m)ε1u = −k1ε1u + ε1(−p1 + m)u = −k1ε1u (19)

since (p1 − m)u = 0. Analogously, since 0 = v(p2 + m) we can simplify the remaining part
of equation (16). Finally, we have

M1 = −A · v[ε3k3ε2k1ε1]u + 2A(ε3 · p2)v[ε2k1ε1]u, (20)

where A is given by equation (17). This expression can also be written in the following form:

M1 = M321 = A321 · v[2(ε3 · p2)ε2k1ε1 − ε3k3ε2k1ε1]u, (21)
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where A321 ≡ A1. The indexes in the last formula are uniformly related to the corresponding
Feynman diagram (see figure 1) by reading them from the right to the left. Analogously, for
the (ij l)-diagram, one finds

Mijl = Aijl · v[2(εi · p2)εj klεl − εikiεj klεl]u, (22)

where (i, j, l) = (1, 2, 3), and

Aijl = 1

4(p1 · kl)(p2 · ki)
(23)

is the real value. The conjugate amplitude M∗
ij l is

M∗
ij l = Aijl · u[2(εi · p2)εlklεj − εlklεj kiεi]v. (24)

The expression for |M|2 value is reduced to the sum of the six matrix element M∗
ij lM321,

where (i, j, l) = (1, 2, 3). The analytical formula for the M∗
ij lM321 matrix element is

M∗
ij lM321 = AijlA321 · u[2(εi · p2)εlklεj − εlklεj kiεi]v · v[2(ε3 · p2)ε2k1ε1 − ε3k3ε2k1ε1]u.

(25)

By averaging this expression over the initial spin of electron and positron states, we find the
expression

M∗
ij lM321 = AijlA321 · Tr

{(
p2 − m

2m

)
[2(εi · p2)εlklεj − εlklεj kiεi]

(
p1 + m

2m

)

× [2(ε3 · p2)ε2k1ε1 − ε3k3ε2k1ε1]

}
= AijlA321 · Bijl . (26)

The trace Bijl can be written in the form

Bijl = 1

4m2
(B1 − m2B2), (27)

where

B1 = Tr{[2(εi · p2)p2εlklεj − p2εlklεj kiεi][2(ε3 · p2)p1ε2k1ε1 − p1ε3k3ε2k1ε1]} (28)

= 4(εi · p2)(ε3 · p2)Tr[p2εlklεjp1ε2k1ε1] − 2(εi · p2)Tr[p2εlklεjp1ε3k3ε2k1ε1]

− 2(ε3 · p2)Tr[p2εlklεj kiεip1ε2k1ε1] + Tr[p2εlklεj kiεip1ε3k3ε2k1ε1]

= 4(εi · p2)(ε3 · p2)B1a − 2(εi · p2)B1b − 2(ε3 · p2)B1c + B1d (29)

and

B2 = Tr{[2(εi · p2)εlklεj − εlklεj kiεi][2(ε3 · p2)ε2k1ε1 − ε3k3ε2k1ε1]} (30)

= 4(εi · p2)(ε3 · p2)Tr[εlklεj ε2k1ε1] − 2(εi · p2)Tr[εlklεj ε3k3ε2k1ε1]

− 2(ε3 · p2)Tr[εlklεj kiεiε2k1ε1] + Tr[εlklεj kiεiε3k3ε2k1ε1]

= 4(εi · p2)(ε3 · p2)B2a − 2(εi · p2)B2b − 2(ε3 · p2)B2c + B2d . (31)

This means that we need to determine the following eight traces: the four traces which
contain electron and positron momenta,

B1a = Tr[p2εlklεjp1ε2k1ε1], (32)

B1b = Tr[p2εlklεjp1ε3k3ε2k1ε1], (33)
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B1c = Tr[p2εlklεj kiεip1ε2k1ε1], (34)

B1d = Tr[p2εlklεj kiεip1ε3k3ε2k1ε1], (35)

and four traces which do not contain any electron and/or positron momenta

B2a = Tr[εlklεj ε2k1ε1], (36)

B2b = Tr[εlklεj ε3k3ε2k1ε1], (37)

B2c = Tr[εlklεj kiεiε2k1ε1], (38)

B2d = Tr[εlklεj kiεiε3k3ε2k1ε1]. (39)

The analytical expressions for these traces solve, in practice, the problem of the three-photon
annihilation for arbitrary energies of the colliding electron/positron. In fact, we have computed
all these traces analytically. The explicit formulae for all individual traces, equations (32)–(39),
as well as for Bijl can be found in [32].

The formulae given above correspond to the case when the polarizations of all photons (i.e.
εi, i = 1, 2, 3) are known or can be easily measured. In many cases, however, the polarizations
of the photons, i.e. the 4-vectors εi (i = 1, 2, 3) cannot be determined. Therefore, in the
formulae presented above, one needs to compute the sums over all final photon polarizations.

We perform the polarization summation using the standard replacement
∑

λ=1,4 ε(λ)
µ ε(λ)

ν =
−gµν . After performing the resulting traces, the expression M∗

ij lM321, for the polarization
summed case can be compactly written

M∗
ij lM321 = Aijl · A321Dijl (40)

for (i, j, l) = (1, 2, 3) and Dijl denotes the resulting traces computed for each of these cases
and given explicitly as follows:

D123 = 8[2(k1 · k3)
2 + (k1 · p2)(k3 · p1) + (k1 · p1)(k3 · p2) + (k1 · k3)(2m2 − p1 · p2)], (41)

D132 = 8[(k1 · k3)(k2 · p1) − (k1 · p2)(4k2 · k3 + k2 · p1 − 2k2 · p2)

+ (k1 · p1)(−k2 · k3 + k2 · p2) + (k1 · k2)(k3 · p1) + (k1 · k2)(p1 · p2)], (42)

D213 = 8[−(k1 · k2)(k3 · p1) + (k1 · p2)(k3 · p1) + (k1 · p1)(k2 · k3 − k3 · p2)

− 4(k1 · k2)(k3 · p2) + 2(k1 · p2)(k3 · p2) + (k1 · k3)(k2 · p1 + p1 · p2)], (43)

D231 = 16k1 · p2

m2
[(k1 · p1)(−m2 − 2k2 · k3 + k2 · p2 + k3 · p2) − (k1 · k2 + k1 · k3)(p1 · p2)

+ (k1 · p2)(k2 · p1 + k3 · p1 + 2p1 · p2)], (44)

D312 = 16k1 · k2

m2
[m4 + 2k3 · p1(m

2 + k3 · p2) + 2m2(p1 · p2) − (k3 · p2)(m
2 + 4p1 · p2)],

(45)

D321 = −32k1 · p2

m2
[(k1 · p2)(k3 · p1) + (k1 · p1)(m

2 − k3 · p2) − (k1 · k3)(k3 · p1 + p1 · p2)].

(46)

The total |M|2 for the polarization summed case is therefore the sum of the six-matrix element
M∗

ij lM321, where (i, j, l) = (1, 2, 3).
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p1

k1

p2

e−

e+

k2

k3

k4

Figure 2. Graph of (e−, e+)-pair annihilation into four photons. The (1, 2, 3, 4)-graph is shown.

4. Four-photon annihilation rate

The analysis of the four-photon annihilation is an important part of any annihilation analysis
of polyelectrons. The reason for this is obvious and it follows from approximate evaluation
of the �4γ annihilation rate which indicates that �4γ ≈ α2�2γ ≈ 1

6�3γ . In other words,
the numerical value of �4γ in any polyelectron is not negligible in comparison to the �3γ

annihilation rate. Therefore, the more accurate evaluation of the �4γ annihilation rate must be
performed in each of the polyelectrons, and in particular, for the Ps− ion and bi-positronium
Ps2.

The Feynman diagram which describes the four-photon annihilation of the electron–
positron pair is shown in figure 2. The principal 4-dimensional conservation law in this case
is written in the form

p1 + p2 = k1 + k2 + k3 + k4, (47)

where p1 and p2 are the 4-vectors of electron and positron momenta, respectively. The
k1, k2, k3 and k4 are the 4-vectors of photon momenta. From equation (47) one may derive a
number of scalar conservation laws, e.g.,

m2 + E1 · E2 − p1 · p2 =
∑

ij (i<j)

(ωiωj − ki · kj ) (48)

and

ωi · E1 − ki · p1 + ωi · E2 − ki · p2 = ωi

( ∑
j (j 
=i)

ωj

)
− ki ·

( ∑
j (j 
=i)

kj

)
. (49)
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The matrix element for the four-photon annihilation rate takes the form

M = v

[
ε4

1

p1 − k1 − k2 − k3 − m
ε3

1

p1 − k1 − k2 − m
ε2

1

p1 − k1 − m
ε1

+ ε3
1

p1 − k1 − k2 − k4 − m
ε4

1

p1 − k1 − k2 − m
ε2

1

p1 − k1 − m
ε1

+ · · · + εi

1

p1 − kj − kl − kn − m
εj

1

p1 − kl − kn − m
εl

1

p1 − kn − m
εn + · · ·

]
u. (50)

An arbitrary (ij ln)-term in this expression transforms in the following way:

Mijln = v

[
εi

1

p1 − kj − kl − kn − m
εj

1

p1 − kl − kn − m
εl

1

p1 − kn − m
εn

]
u (51)

= Aijln · v

[
εi(p2 − ki + m)εj (p1 − kl − kn − m)εl(p1 − kn − m)εn

]
u,

where (i, j, l, n) = (1, 2, 3, 4), and

Aijln = 1

8(p2 · ki)(p1 · kn)[(p1 · kl) + (p1 · kn) − (kl · kn)]
. (52)

Now, we can use the relations (p1 − kn + m)εnu = εn(−p1 + kn + m)u = εnknu

(since (−p1 + m)u = 0) and vεi(−p2 − ki + m) = v(p2 + m + ki)εi + v[−2(p2 · εi)]ki =
v[kiεi − 2(p2 · εi)ki] (since v(p2 + m) = 0). With the use of these relations, one finds

Mijln = Aijln · {−2(εi · p2) · v[εj (p1 − kl − kn + m)εlεnkn]u + v[εikiεj (p1 − kl

− kn + m)εlεnkn]u} = Aijln · {2(εi · p2) · v[εj (kl + kn)εlεnkn]u

− v[εikiεj (kl + kn)εlεnkn]u − 2(εi · p2) · v[εj εlεn(p1 + m)kn]u

+ v[εikiεj εlεn(p1 + m)kn]u}. (53)

After one additional step of transformations, one finds

Mijln = Aijln · {2(εi · p2) · v[εj (kl + kn)εlεnkn]u − v[εikiεj (kl + kn)εlεnkn]u

− 4(εi · p2) · (p1 · kn)v[εj εlεn]u + 2(p1 · kn)v[εikiεj εlεn]u}. (54)

In particular, for the (4321)-amplitude M4321, we have

M4321 = A4321 · {2(ε4 · p2) · v[ε3(k2 + k1)ε2ε1k1]u − v[ε4k4ε3(k2 + k1)ε2ε1k1]u

− 4(ε4 · p2) · (p1 · k1)v[ε3ε2ε1]u + 2(p1 · k1)v[ε4k4ε3ε2ε1]u} (55)

while

M∗
ij ln = Aijln · {2(εi · p2) · u[knεnεl(kl + kn)εj ]v − u[knεnεl(kl + kn)εj kj εi]v

− 4(εi · p2) · (kn · p1)u[εnεlεj ]v + 2(kn · p1)u[εnεlεj kiεi]v}. (56)

Now, by using the two last formulae one can obtain the explicit expression for all required
M∗

ij lnM4321 products. In general, each term of one such product contains 32 different terms.
The total number of terms in the |M|2 matrix element is 32 × 24 = 768. However, many of
the contributing terms equal zero identically. Analytical computation of the |M|2 factor for
four-photon case and for arbitrary energies of the colliding particles will be the goal of our
next study. These formulae can also be found in [32].
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5. On the creation of macroscopic polyelectrons

As mentioned above, a possibility to create various/higher polyelectrons was discussed by
Wheeler [8]. Later this problem has been re-considered by many authors (see, e.g., [11] and
references therein). In all these works, however, no actual approaches were proposed which
can be used to form polyelectrons. Here we introduce the method in which the radiation-
driven ablative implosion is applied to produce linear (or quasi-linear) polyelectrons e+

ne−
m

with arbitrary large, in principle, numbers n and m. In fact, the proposed approach can be
used to obtain even the macroscopic polyelectrons, i.e. the e+

ne−
m systems in which m ≈ NA

and n ≈ NA, where NA is the Avogadro number. It is clear that the following annihilation
of such polyelectrons will produce an extremely intense flash of annihilation γ -quanta Eγ ≈
0.511 MeV.

The idea of this two-stage method is simple and transparent. At the first stage, some closed
spatial area is saturated with the positrons e+. The currently used experimental methods allow
one to obtain the spatial positron density which approximately equals ρ0 ≈ 1 × 1014 particles
per cm3. At the second stage of the method, this low-dense positron gas is rapidly compressed
by very intense pulse of the x-ray radiation with wavelengths λ ≈ 3–10 Å. The axial
(or cylindrical) symmetry of compression is crucial for the workability of this method.

The basic design of a device in which the macroscopic polyelectrons e+
ne−

m can be created
must include the two principal parts: (1) a very intense source of x-ray radiation (the so-called
primary) and (2) a secondary vacuum chamber. Both these parts are placed in a cavity with
the outer walls which reflect a substantial part of the x-rays coming from the overheated
primary. Usually, the walls of such cavities (= outer walls, below) are made of heavy metal
with large nuclear charge Z, e.g., Pb (Z = 82) and/or Bi (Z = 83). The vacuum volume of
the secondary chamber is saturated by positrons e+ to the maximal possible density. Without
loss of generality one may represents the primary as a nuclear charge (explosive) covered by
the outer shell made from some high-Z metal (Z � 80). When this heavy metal is heated from
inside to extremely high temperatures T � 50–70 keV, then it becomes a very intense source
of hard x-ray radiation (λ ≈ 0.5–5 Å). The flux of x-ray radiation from the primary reflects
from the outer walls of the device and penetrates the walls of the secondary chamber. A very
intense flux of the hard x-rays also produce photoionization in various electron shells of atoms
in the walls of secondary chamber. The emitted photoelectrons e− are accelerated to relatively
large velocities. In fact, they begin to propagate into the volume of secondary chamber
which is saturated with positrons e+. Formally, this step corresponds to the formation of the
electron–positron mixture (in the secondary chamber) of low density ≈1016–1018 particles
per cm3.

In the following moments, the electron–positron mixture is compressed by the incoming
fluxes of x-rays of very high intensity. As follows from the general theory of atomic ablation
[33], the compression of electron–positron plasma will continue until the radiation pressure
from inside of the (e−, e+)-plasma will equalize the ablation pressure of radiation from the hot,
heavy element plasma (primary). This simple criterion allows one to evaluate the maximal
density of electron–positron plasma at this moment. In fact, as follows from the formula,
equation (14), derived in [33], the equilibrium density of the (e−, e+)-plasma (in g cm−3)
will be

ρ(e−,e+) ≈ 0.18 ρhv

[
M(e−,e+)

Mhv

](
Zef

q

)2.5

q T − 1
2 , (57)

where ρhv and Mhv are, respectively, the macroscopic density and molar mass of the heavy
element plasma, while ρ(e−,e+) and M(e−,e+) are the corresponding density and molar mass
of the (e−, e+)-plasma. In equation (57), T (in keV) is the temperature of the hot, heavy
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element plasma (e.g., uranium plasma), while the charges Zef and q are the effective electric
charges of the heavy element plasma (at temperature T) and (e−, e+)-plasma, respectively.
At thermal equilibrium, the charge Zef is uniformly related to the temperature T (in keV):
Zef = 8.573

√
T . Now, by assuming that ρhv = 20 g cm−3 and q = 1 in all cases one

finds that for T = 50 keV the density of electron–positron plasma is ρ(e−,e+) ≈ 6.640 ×
10−2 g cm−3 (or ≈3.645 × 1025 electron–positron pairs per cm3). For T = 70 keV, analogous
density is ρ(e−,e+) ≈ 8.545 ×10−2 g cm−3 (or ≈4.690 × 1025 electron–positron pairs per cm3).
From here one can easily evaluate the macroscopic annihilation rate and total rate of energy
transformation (as expected these values as well as the total x-ray brightness are extremely
large).

It should be mentioned that in the considered case the mass of extremely hot, heavy
element plasma is significantly larger than the original mass of the electron–positron mixture.
From here one can expect that the electron–positron plasma will be compressed to densities
which are much larger than the predicted density of 4 × 1025 electron–positron pairs per
cm3. In reality, however, we have to take into account the continuous annihilation of the
(e−, e+)-pairs and heating of the compressed electron–positron plasma due to the Compton
scattering of annihilation γ -quanta. Moreover, in any dense plasma the corresponding Fermi
limits (see, e.g., [34]) restrict the maximal density of the compressed plasma. Indeed, in any
electron–positron mixture there is a minimal pressure

Pa = naTef

[
1 +

π2

15

(
Ta

Tef

)2

+ · · ·
]

(58)

which is consistent with the Fermi degeneracy of the electrons/positrons. In equation (58), the
subscript a equals ‘+’ for positrons and ‘−’ for electrons, Ta is the actual temperature, while

Tef = (9)
1
3

5

(
π2h̄2

me

)
ρ

2
3
b is the so-called ‘equivalent Fermi temperature’ of the (e−, e+)-mixture

and ρb = max(ρ+, ρ−) is the density of the main component (i.e. electron and/or positron
component). For almost equimolar (e−, e+)-mixtures, the total pressure P = P+ + P− ≈ 2P−.
As follows from equation (58) at Ta ≈ Tef the actual pressure in the electron–positron mixture
can be significantly larger (by a few orders of magnitude) than the pressure determined from
the usual formula Pa = naTa .

Note that the macroscopic polyelectrons, and even linear polyelectrons, show a number of
properties which cannot be found in any other macroscopic system. Indeed, all regular atomic
and molecular systems in our world are the Born–Oppenheimer systems. In such systems
all usual positive particles are heavy, while all negatively charged particles (electrons) have
significantly (in ≈2000 times) smaller mass. A few recently created systems consisting of
antiparticles are also the Born–Oppenheimer systems, since the masses of negative particles
in such systems are much larger than the masses of positive particles. In contrast with this, the
electron–positron plasma is an example of the system from different, non-Born–Oppenheimer
world.

6. Conclusion

Thus, we have considered the annihilation of electron–positron pairs in some polyelectrons,
including the Ps− ion, bi-positronium Ps2 system and e+

2e−
3 ion. Annihilation of the electron–

positron pairs in these polyelectrons is considered in detail. A number of problems related
to the annihilation of the (e−, e+)-pairs discussed in this study have never been considered.
In particular, we derive the analytical expression for the amplitude-square |M|2 of the three-
photon annihilation of (e−, e+)-pair at arbitrary energies of the colliding particles. Analogous
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expression for the |M|2 factor in the case of four-photon annihilation will be produced in our
next work. The method which can be used to produce macroscopic polyelectrons e+

ne−
m in

an external radiation field is briefly discussed. This approach is based on the idea of atomic
compression.
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